Theorem 1.

or in terms of matriz elements
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Proof. Starting with (0g)zz = A and 0 for other elements,
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Note for every summed index the expression is 0, expect ij = . Therefore,
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As both g and its inverse are symmetric, this concludes the proof.
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Proof. By using the previous result, and chain rule, one gets
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Proof. Starting from g,,9%° = §7 one derives
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